
Journal of Computational Physics 226 (2007) 1550–1588

www.elsevier.com/locate/jcp
Towards front-tracking based on conservation in two
space dimensions II, tracking discontinuities

in capturing fashion

Mao De-kang *,1

Department of Mathematics, Shanghai University, Shanghai 200444, PR China

Received 10 April 2006; received in revised form 24 May 2007; accepted 1 June 2007
Available online 14 June 2007
Abstract

In this paper, the second one in the series beginning with [D. Mao, Towards front tracking based on conservation in two
space dimensions, SIAM J. Sci. Comput. 22 (1) (2000) 113–151], we study another important feature of our 2D conserva-
tive front-tracking method, i.e. discontinuity curves in two space dimensions are tracked in a 1D capturing fashion. The
evolution of 2D discontinuity curves are locally described by 1D conservation laws with source terms, which are derived
from the governing equations. The front-tracking in our method is then realized by numerically simulating these 1D con-
servation laws with source terms in a conservative fashion. In this paper, our 2D front-tracking method is described in
details, which is Cartesian-grid-based, conservative and much simpler in algorithm than other 2D front-tracking methods.
The discussion starts with the 1D case, which facilitates the following 2D discussion. Data structure of the numerical solu-
tions and first- and second-order versions of our 2D front-tracking method are described. Finally, numerical examples for
both scalar equations and the Euler system of gas dynamics in 2D are presented to show the efficiency and effectiveness of
the method.
� 2007 Elsevier Inc. All rights reserved.

AMS subject classification: 65M05; 65M10; 35L65

Keywords: Conservation laws; Front-tracking; Discontinuity cell; Cartesian-grid-based
1. Introduction

We are concerned with the nonlinear hyperbolic systems of conservation laws
0021-9

doi:10

* Tel
E-m

1 Re
ut þ
Xm

i¼1

fiðu; xÞxi
¼ 0; ð1:1Þ
991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

.1016/j.jcp.2007.06.004

.: +86 21 66134464; fax: +86 21 66133239.
ail address: dkmao@staff.shu.edu.cn

search is supported by China NSF Grant No. 10171063 and Shanghai Pu Jiang Program [2006] 118.

mailto:dkmao@staff.shu.edu.cn

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1551
where u and fi(u,x) can be either scalars or vectors, with m = 1 or 2. For many years, we have been developing
a front-tracking method based on the philosophy of the Lax–Wendroff theorem [16] for the systems, i.e. track-
ing discontinuities by enforcing the conservation properties of solutions. The research can be traced back to
[30,31]. The progress of the development and the efficiency and effectiveness of the methods in 1D and 2D were
reported in [22,24,26–29,25,20,21,12,13]. At present, the 1D method has been completed. An all-purposed and
robust algorithm has been built and tested on a variety of numerical examples, and the results were excellent
[20,21,12,13].

The real challenge comes from the 2D and higher-dimensional cases. Beginning with [24], we planned to
present a series of papers to develop the conservative front-tracking method in two space dimensions. In
[24], we developed for the first time the method and tested it on certain examples to verify its efficiency. Like
its 1D version, the method tracks discontinuities by enforcing the conservation properties of solutions.

The present paper is the second one in the series in which we are going to explore another important feature
of our 2D method, i.e. discontinuity curves in 2D are tracked in a 1D capturing fashion. As a matter of fact, it is
this feature that makes our 2D front-tracking method Cartesian-grid-based, i.e. the method runs on Cartesian
grid without introducing adaptive grids. Thus, the method’s data structures are easy to manage and its algo-
rithm is easy to code. Based on this exploration, we give in this paper a detailed description of implementation
of our method, which includes the solution structure and the algorithm.

To begin with, we briefly review the front-tracking methods developed by other people. See
[3,4,8,9,7,17,40,41] and the papers cited therein. Front-tracking methods are distinguished from capturing
methods by having a separate numerical description, a lower dimensional adaptive moving grid, curve in
2D and surface in 3D, for a discontinuity. In most 2D front-tracking methods, this adaptive moving curve
of a discontinuity is described by a set of logically connected points and elements, called front, and is stored
in a doubly linked list. The front can be either grid-based or grid-free as shown in Fig. 1.1. There is also a fixed
grid, maybe modified near the front to make a grid line to follow the discontinuity, for the solution in smooth
regions.

The solution in smooth regions, defined either pointwisely or cell-averagely, are computed by numerical
methods obtained by direct discretization of the governing equations, the Euler equations of compressible flu-
ids, the Navier–Stokes equations of incompressible fluids, or other sets of equations. To compute the solution
near a front, solution properties on and solution relations across the discontinuity would be approximated.
For example, in the Euler equations Riemann problems need to be solved and in the incompressible
Navier–Stokes equations surface tension needs to be evaluated on the front [15,39,40]. The front is tracked
at each point by its moving velocity, which is obtained in certain ways. Shocks in the Euler equations move
with velocities constrained by the Hugoniot conditions across them and can be obtained by solving Riemann
problems on the fronts, while contact discontinuities and material interfaces in either the Euler equations or
the incompressible Navier–Stokes equations are simply dragged by the velocity field of the flow.

In spite of their high accuracy and lack of numerical diffusion, the main criticism of the front-tracking
methods is about their complexity. This complexity is obviously caused by the fact that the solution in smooth
regions and the front are defined on different grids and computed using algorithms substantially independent
of each other, which makes the integration of the latter into the former very complicated. The complexity
a b

Fig. 1.1. Front and fix Cartesian grid. (a) The front is grid-based, where the small circles are the points which are connected by the curve
elements. (b) The front is grid-free, where the dots are points which are connected by the curve elements.

1552 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
starts with embedding a front into the fixed grid since the former cuts the latter and generates irregular grid
cells varying with time near the front, see Fig. 1.1. The ‘‘one-flow’’ model suggested in [40] avoids the gener-
ation of irregular grid cells and thus somewhat eases the complexity, it seems that this approach has been
applicable only to the incompressible Navier–Stokes equations so far. The communication between the fixed
grid and the front, i.e. the data transfer from the fixed grid to the front and vise versa, adds to the complexity
of the method. Finally, the management of the front itself also causes complexity. The front needs to be recon-
structed from time to time to maintain a proper spacing between points and elements and prevent the forma-
tion of wiggles.

Some people think that the connectivity between points and elements on fronts is also a cause of algorithm
complexity and thus design front-tracking methods without connectivity [36,39], in which indicator functions
are used to describe the tracked discontinuity curve. The volume of fluid methods (VOF) [11,33,34] and the
level set tracking methods [1,2,6] do not involve connectivity of points and elements either; therefore, their
data structures and algorithms are easy to manage in coding. However, we do not think the connectivity will
be a major cause for algorithm complexity when the tracking method is Cartesian-grid-based, such as the one
presented in this paper. The structured feature and regularity of a Cartesian grid will greatly limit the cases
needed to be handled in the algorithm, which will be seen in the following discussion. In addition, all the mod-
ern computer languages, such as Fortran 90 and C++, well support all the fancy data structures that are nec-
essary for describing the connectivity in either 2D or 3D, such as doubly linked lists, trees and graphs.

Our front-tracking method is based on the following fact: The discontinuities in solutions to Eq. (1.1) in 2D
are moving curves; and like all 2D moving curves, their evolution can be locally described by 1D partial dif-
ferential equations (PDE’s). These 1D PDE’s can be easily obtained by integrating Eq. (1.1) accordingly in
either x or y direction; therefore, they are also conservation laws, however, in one space dimension and with
source terms (see Section 3). The front-tracking is then accomplished by numerically simulating these 1D con-
servation laws with source terms in a conservative fashion. The key to our method is that the numerical sim-
ulation of these 1D PDE’s is also carried out on the fixed Cartesian grid on which the solution in smooth
region is computed. Moreover, the simulation of the 1D PDE’s uses the same numerical fluxes on cell-inter-
faces used in the computation of solution in smooth regions. Thus, the integration of the tracking part of the
algorithm into the part of the algorithm for the smooth regions becomes simple and natural. As will be seen in
the following discussion, the former is just embedded into the latter. All the numerical complexities seen in
other front-tracking methods are avoided. The management of a front also becomes quite simple because
the discontinuity positions now move along the grid lines rather than in all directions as in other front-track-
ing methods. In addition, the simulation of the 1D conservation laws can enjoy many well-developed numer-
ical methods for 1D conservation laws. The conservation of solutions is automatically preserved and
enhancing the accuracy becomes easy. Although our method is developed for (1.1), a model of which is the
compressible Euler equations, we believe that the methodology is applicable to other sets of equations, such
as the incompressible Navier–Stokes equations.

We note the similarity of our front-tracking method to the VOF methods. Both of them reconstruct discon-
tinuities by the constraint of local conservation and track them by evolving fluid volume forward in time with
solutions to certain advection PDE’s. However, the VOF methods are tracking methods without connectivity
while ours is with connectivity. Moreover, the advection PDE used in VOF methods for the tracking is of 2D
and is thus a global description of the flow evolution (see Section 3 in [34]), while the one used in our method is
of 1D and is thus a local description of the evolution of the discontinuity curve. As will be seen in Section 3,
benefited by these features the reconstruction and tracking of discontinuity curves in our front-tracking
method are much simpler and more natural than that of the VOF methods.

The organization of the paper is as follows: Section 1 is the introduction. We begin our discussion with the
1D case in Section 2, in which we will show how to find a conservative ODE to describe the evolution of a
discontinuity and how to discretize it on the fixed Cartesian grid to accomplish our front-tracking. The 1D
discussion, though simple and of limited practical use, facilitates the following 2D discussion. The main part
of the paper is Section 3, in which we present our 2D conservative front-tracking method. As in the 1D case,
we first find the 1D PDE’s to locally describe the evolution of a discontinuity curve, based on which a detailed
description of our 2D front-tracking method, which includes the solution structure and algorithm, is pre-
sented. The tracking of a front in our method is accomplished by numerical simulation of the found 1D

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1553
PDE’s, and we present in the section the first- and second-order discretization of these PDE’s. A sketch on
how their higher-order discretization can be accomplished is also given in the section. In Section 4 we present
several numerical examples of scalar conservation laws and Euler system for c-law gas computed with a sec-
ond-order version of our front-tracking method to show the efficiency and effectiveness of the method. Finally,
Section 5 is the conclusion.

2. One-dimensional method

To facilitate the development of our 2D front-tracking method we first describe in this section the 1D ver-
sion of the method.

2.1. Mathematical formulation

Eq. (1.1) in one space dimension reads
ut þ f ðu; xÞx ¼ 0: ð2:1Þ

We begin with the case that both u and f(u) are scalar and assume that the solution involves only one discon-
tinuity, whose position at time t is s(t). On the two sides of the discontinuity the solution, denoted by u�(x, t)
and u+(x, t), respectively, is assumed to be smooth enough and can be smoothly extended to the other sides
(see Fig. 2.1).

To find the equation that describes the evolution of the discontinuity in the solution, we first integrate (2.1)
with respect to x from x = a to x = b and obtain
d
R b

a uðx; tÞ
dx

dt þ f ðuþðb; tÞ; bÞ � f ðu�ða; tÞ; aÞ ¼ 0; ð2:2Þ
where a and b are two constants. Here
R b

a uðx; tÞdx is the total volume of the physical species u in the interval
[a,b] at time t, and it consists of two parts, the integrals of u�(x, t) and of u+(x, t), respectively,
Z b

a
uðx; tÞdx ¼

Z sðtÞ

a
u�ðx; tÞdxþ

Z b

sðtÞ
uþðx; tÞdx; ð2:3Þ
with s(t) as the dividing point. Since we are concerned with the evolution of the discontinuity, we regard s(t) as
the unknown in Eq. (2.2) and view u(x, t) as known. Under this consideration, the integral

R b
a uðx; tÞdx is a

function of the discontinuity position s(t), and we denote it by U(a,b)(s(t)). With this notation, Eq. (2.2) reads
dU ða;bÞðsðtÞÞ
dt

þ F ða;bÞðtÞ ¼ 0 ð2:4Þ
with F(a,b)(t) = f(u+(b, t),b) � f(u�(a, t), a) the flux difference between the two ends. This ordinary differential
equation describes the evaluation of the discontinuity in the solution. It should be noted that s(t) is not
necessary to be between a and b, it can be either on the left of a or the right of b. We should bear this in mind
when developing the front-tracking method in the following discussion.
bs(t)a
X

u (x,t)–

u (x,t)+

Fig. 2.1. The solution is piecewise smooth and involves only one discontinuity, whose position is s(t) at time t.

1554 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
The physics Eq. (2.4) describes is familiar to us, i.e. the conservation of u in the interval [a,b]. More pre-
cisely, the variation of the total volume of u in the interval is balanced by the flow-in and -out through the two
ends of the interval, and this variation of u causes the movement of the discontinuity position in the interval as
shown in Fig. 2.2.

The solution to (2.1) satisfies the Hugoniot condition across the discontinuity
Fig. 2.
movem
½u� ds
dt
¼ ½f �; ð2:5Þ
where [u] and [f] are jumps of the solution and flux across the discontinuity. A quick calculation shows that
(2.4) and (2.5) are equivalent to each other, both describing the evolution of the discontinuity. However, Eq.
(2.4) is in a conservation form and (2.5) is not.

Eq. (2.4) can be easily integrated because the flux difference Fa,b(t) involved in it is a known function of t.
Once U ða;bÞðsðtÞÞ ¼

R b
a uðx; tÞdx was computed, the discontinuity position s(t) can then be solved out from (2.3)

with u�(x, t) and u+(x, t) as known functions. If the interval [a,b] is small and u�(x, t) and u+(x, t) do not vary
rapidly, Eq. (2.3) admits a unique solution for s(t).

When (1.1) is a system of equations we have for each physical species of u an equation of (2.3), and this
situation should be counted in our front-tracking method.

2.2. Numerical implementation

The 1D front-tracking method going to be described in this subsection is developed in [26,28–
31,20,21,12,13].

2.2.1. Structure of solution

Our numerical solution is defined on a fixed Cartesian grid. The grid cells harboring no discontinuity are
called smooth cells, and the grid cells harboring one discontinuity are called discontinuity cells. In a smooth
cell the numerical solution is a cell-average approximation to the exact solution
un
j ’

1

h

Z xjþ1=2

xj�1=2

uðx; tnÞdx: ð2:6Þ
However, in a discontinuity cell the numerical solution has three cell-average approximations, the left cell-
average un;�

j , which is a cell-average approximation to the smooth solution and its extension on the left of
the tracked discontinuity, the right cell-average un;þ

j , which is a cell-average approximation to the smooth solu-
tion and its extension on the right of the tracked discontinuity, and the ordinary cell-average un

j , which is the
cell-average approximation to the exact solution involving the tracked discontinuity. The left and right
cell-averages are actually two ‘‘ghost’’ states used to describe the numerical solution and its extension on
the two sides of the tracked discontinuity.

Our front-tracking method involves a ghost technique, called ‘‘stack-technique’’, to handle the close-to-
each-other discontinuities. A grid cell may host more than one discontinuity cells and they are neighboring
discontinuity
position

flow in flow out

x=a x=b

2. The variation of the total volume of u in the interval is caused by the flow-in and -out through the two ends, which causes the
ent of the discontinuity position.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1555
to each other. Any two neighboring critical cells in the stack share a common cell-average, which is the left
cell-average of the right discontinuity cell and the right cell-average of the left one. Fig. 2.3 shows the smooth
cells and discontinuity cells, single and stacked. A stacked discontinuity cell is treated in our method as a single
discontinuity cell with its left and right cell-averages as the smooth solution on its two sides.

In the program, all the discontinuity cells and their related information are stored in a doubly linked list in
the order from the left to the right. There is a grid map to indicate whether a grid cell is smooth cell or hosts
discontinuity cells, and if the cell hosts a stack of discontinuity cells the map also stores the addresses of the
top (left) and the bottom (right) members of the stack in the doubly linked list. In this way, the solution is
structured in an ‘‘I-know-only-my-neighbors’’ fashion; that is, in each grid cell, either smooth or discontinuity,
one can find its neighbor cells by the grid map and the doubly linked list of the discontinuity cells.

2.2.2. Computing solution in smooth regions
Since stacked discontinuity cells are treated in our method as single discontinuity cells, in the following two

sub-subsections we will only consider the case of single discontinuity cells. The stacked discontinuity cells can
be treated analogously in the algorithm.

We employ a finite-volume scheme
unþ1
j ¼ un

j � kðf̂ n
jþ1=2 � f̂ n

j�1=2Þ ð2:7Þ
for the computation of smooth regions, where un
j is the cell-average approximation to the exact solution and

f̂ n
jþ1=2 is the flux average approximation to f(u,x) on the cell-interface at xj+1/2
f̂ n
jþ1=2 ¼ f̂ ðun

j�kþ1; . . . ; un
jþkÞ ’

1

s

Z tnþ1

tn

f ðuðxjþ1=2; tÞ; xjþ1=2Þdt; ð2:8Þ
which is consistent with the flux function f(u,x) in the sense as described in [18, Section 12.2], and k = s/h is the
mesh ratio with s and h being the time and space increments of the grid, respectively. The computation of
smooth regions is proceeded in the fashion that on each side of a discontinuity it uses information only from
the same side. This can be accomplished as whenever data across the tracked discontinuity are required,
smooth extension data from the same side are used. For example, if the solution has a discontinuity cell in
the grid cell ½xj1�1=2; xj1þ1=2�, then the solution in the smooth cells on the two sides is computed as
unþ1
j ¼ un

j � kðf̂ n;�
jþ1=2 � f̂ n;�

j�1=2Þ; ð2:9Þ
with ‘‘�’’ for j < j1 and ‘‘+’’ for j > j1, respectively, where
f̂ n;�
jþ1=2 ¼ f̂ ðun

j�kþ1; . . . ; un
j1�1; u

n;�
j1
; . . . ; un;�

jþk; xjþ1=2Þ; ð2:10Þ
and
f̂ n;þ
jþ1=2 ¼ f̂ ðunþ

j�kþ1; . . . ; un;þ
j1
; un

j1þ1; . . . ; un
jþk; xjþ1=2Þ ð2:11Þ
solution

discontinuity cell smooth cellstacked discontinuity cell

Fig. 2.3. Smooth cells and discontinuity cells in one space dimension.

1556 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
with un;�
i being the left and right cell-averages in the discontinuity cell or the smooth extension data of the cell-

averages from the two sides to the other sides. The left and right cell-averages in the discontinuity cell are com-
puted in the same fashion as above, i.e.
unþ1;�
j1

¼ un;�
j1
� kðf̂ n;�

j1þ1=2 � f̂ n;�
j1�1=2Þ: ð2:12Þ
In doing this, the ‘‘I-know-only-my-neighbors’’ structure of the solution allows us to easily produce the
smooth data used in the evaluation of (2.10) or (2.11). When discontinuity cells are close to each other or even
stacked in the same grid cells, the extension data used are obtained by low-order or even zeroth-order extrap-
olation because there are not enough grid cells to implement high-order extrapolation.

Once the cell-averages in all smooth cells and the left and right cell-averages in all discontinuity cells are com-
puted, the solution in each smooth region, including the smooth regions between stacked discontinuity cells,
and its extension near discontinuities can then be reconstructed via interpolation and extrapolation. As a matter
of fact, most finite-volume schemes, e.g. [10,5], provide this reconstruction facility. However, when discontinu-
ity cells are closed to each other or even stacked in the same grid cell, the reconstruction can only be accom-
plished with low-order or even zeroth-order interpolations due to the lack of enough grid cells. Moreover,
the flow fluxes across all cell-interfaces during the time step are computed. Therefore, in the following discus-
sion the solution in smooth regions and the flow fluxes across all cell-interfaces are known. For simplicity of
discussion we denote the reconstructed solution with u in the following discussion without risk of ambiguity.

2.2.3. Tracking discontinuities

We now discretize Eq. (2.4) to compute the ordinary cell-average in a discontinuity cell, and again we
assume the discontinuity cell to be in the grid cell ½xj1�1=2; xj1þ1=2�. By taking a ¼ xj1�1=2 and b ¼ xj1þ1=2 in
(2.3) we have
U ða;bÞðsðtÞÞ
h

¼ 1

h

Z xj1þ1=2

xj1�1=2

uðx; tÞdx ¼ uj1
ðtÞ: ð2:13Þ
Integrating (2.4) with respect to t over the interval [tn, tn+1] and noticing (2.13) we arrive at
unþ1
j1
¼ un

j1
� k

1

s

Z tnþ1

tn

f ðuþðxj1þ1=2; tÞ; xj1þ1=2Þdt � 1

s

Z tnþ1

tn

f ðu�ðxj1�1=2; tÞ; xj1�1=2Þdt
� �

; ð2:14Þ
where un
j1

and unþ1
j1

are the ordinary cell-averages in the discontinuity cell at time tn and tn+1, respectively. By
approximating the fluxes 1

s

R tnþ1

tn
f ðu�ðxj1�1=2; tÞ; xj1�1Þdt with the numerical fluxes f̂ n;�

j1�1=2 used in (2.12) we
obtain
unþ1
j1
¼ un

j1
� k f̂ n;þ

j1þ1=2 � f̂ n;�
j�1=2

� �
: ð2:15Þ
Once the cell-average unþ1
j1

is computed, the discontinuity position sn+1 . s(tn+1) is solved from (2.3) with
a ¼ xj1�1=2 and b ¼ xj1þ1=2. When (2.1) is scalar, there is only one equation of (2.3) for solving sn+1. In this case,
if the smooth solution is reconstructed in a piecewise constant fashion, the discontinuity position is simply
solved as
snþ1 ¼ xj1
þ

unþ1
j1
� unþ1;�

j1

unþ1;þ
j1

� unþ1;�
j1

: ð2:16Þ
When (2.1) is a system, we will have more than one equation of (2.3) for solving sn+1. In this case, the final
discontinuity position should be taken as an average of all the solved sn+1’s. However, when the governing
equations are the Euler system and the tracked discontinuity is a contact discontinuity, the discontinuity posi-
tion is taken as the solution of (2.3) for the density since the contact discontinuity is a discontinuity of density.

2.2.4. Moving and collisions of discontinuities

The discontinuity position sn+1 at the next time level may move out of the original discontinuity cell. Under
the CFL restriction on the mesh ratio s/h, sn+1 may move only to either the left or the right neighbor cell. In

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1557
this case, the old discontinuity cell should be deleted. If the neighbor grid cell was a smooth cell, it now hosts a
discontinuity cell, and if the neighbor grid cell already hosted a stack of discontinuity cells, now one more dis-
continuity cell is added on the stack. It is important to maintain the conservation of the solution in updating
the cell-averages. For example, if the grid cell ½xj1�1=2; xj1þ1=2� hosted a discontinuity cell at tn, and sn+1 moved
into the left neighbor grid cell at tn+1. In this case, cell ½xj1�1=2; xj1þ1=2� becomes smooth cell and the cell
½xj1�3=2; xj1�1=2� hosts a discontinuity cell at tn+1, and the cell-averages are updated as
unþ1;�
j1�1 :¼ unþ1

j1�1;

unþ1
j1�1 :¼ unþ1

j1�1 þ unþ1
j1
� unþ1;þ

j1
;

unþ1
j1

:¼ unþ1;þ
j1

;

unþ1;þ
j1�1 :¼ extension data from the left:

8>>>>>><>>>>>>:
ð2:17Þ
In doing so the sum unþ1
j1�1 þ unþ1

j1
is unchanged; therefore, the conservation of the solution is preserved. The

cases of moving to the right and of stacked discontinuity cells are treated analogously.
The discontinuity positions of two neighboring discontinuity cells in a stack may move across each other,

which means that the two tracked discontinuities must collide somewhen during the time step. In this case, the
old discontinuity cells should be deleted and new discontinuity cells corresponding to the discontinuities ema-
nating from the collision should be set, and all this is implemented at tn+1 without the knowledge of the exact
collision time during the time step. The Riemann problem with the left cell-average of the left discontinuity cell
and the right cell-average of the right discontinuity cell as the left and right states is solved to find the values
for the left and right cell-averages of the new discontinuity cells. The ordinary cell-averages of the new discon-
tinuity cells are computed in accordance with the characteristic waves emanating from the Riemann problem
and maintaining the conservation of the solution. Since the method is Cartesian-grid-based, all these can be
implemented easily and naturally. The detailed description of the algorithm for moving and collisions of dis-
continuity cells can be found in [21,26].

2.2.5. Propagation of waves in other characteristic fields

If (2.1) is a system of equations, there will be several characteristic fields and thus several different kinds of
discontinuities. When tracking a discontinuity of a certain kind, waves in other characteristic fields may prop-
agate across it. This situation should be treated properly. Principally speaking, the Riemann problem is solved
at the discontinuity, and based on the solution to the Riemann problem information related to the other char-
acteristic fields are separated from the cell-averages in the discontinuity cell and then transferred to the cor-
responding sides to update the left or right cell-averages there. Certain integrals of the type

R
ðuþ � u�Þdx will

be evaluated; nevertheless, they are all defined on the fixed Cartesian grid and thus can be easily evaluated by
numerical quadratures. The detailed algorithm for the wave propagation in other fields can be found in
[26,20,21].

2.3. Summary

Thus, we completed the description of our 1D conservative front-tracking method. As is seen in the descrip-
tion, the method has the following features: (1) Based on the philosophy of the Lax–Wendroff theorem, the
method tracks discontinuities by enforcing the conservation properties of solutions. This conservation feature
of the method, together with the accuracy of the underlying scheme (2.7), guarantees the accuracy of the track-
ing and the robustness of the treatment of collisions of discontinuities and spontaneous shocks, which has
been verified by the numerical examples presented in [20,26]. A strict analysis of truncation error of the
method is presented in [20] (see the Theorem 3.1 in that paper). (2) The method is Cartesian-grid-based. Actu-
ally, it is formulated as consisting of a 1D capturing and an ODE differencing, the former computing the solu-
tion in smooth regions and the latter tracking discontinuities. Both the 1D capturing and ODE differencing are
implemented on the fixed Cartesian grid; therefore, the data structures involved are much simpler and algo-
rithm is much easier to code compared with those of other 1D front-tracking methods. Moreover, the method
completely gets rid of the small-cell problem that bothers most front-tracking methods. We have built a code

1558 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
for the 1D method in Fortran90, which involves about 3500 instructions with thirty plus modules on different
levels and has the facilities of tracking, handling collisions of discontinuities, and capturing spontaneous
shocks and then tracking them in the following computation.

3. Two-dimensional method

Now we are going to develop our 2D front-tracking method, and we will still proceed our discussion as in
the previous section for the 1D method.

3.1. Mathematical formulation

Eq. (1.1) in two space dimensions reads
Fig. 3.
ut þ f ðu; x; yÞx þ gðu; x; yÞy ¼ 0: ð3:1Þ
We still begin with the scalar case and assume that the solution involves only one discontinuity, on the two
sides of which the solution, denoted by u�ðx; y; tÞ and uþðx; y; tÞ, respectively, is smooth enough and can be
smoothly extended to the other sides. An orientation is defined on the discontinuity curve, and in the following
discussion the orientation is always so defined that u� is on the left and u+ is on the right of the curve.

In the 2D case, the discontinuity is a moving curve in the (x,y)-plane. Let us begin with a special case that
the discontinuity curve is described by a smooth function y ¼ sðx; tÞ at time t, above which is the right region
and below which is the left region, as shown in Fig. 3.1. As in the 1D case, we first integrate (3.1) with respect
to y from y = a to y = b and obtain
o
R b

a uðx; y; tÞdy
ot

þ
o
R b

a f ðuðx; y; tÞ; x; yÞdy
ox

þ gðuþðx; b; tÞ; x; bÞ � gðu�ðx; a; tÞ; x; aÞ ¼ 0; ð3:2Þ
where a and b are again two constants. There are two integrals in (3.2), i.e.
R b

a uðx; tÞdy and
R b

a f ðuðx; y; tÞ; x; yÞ
dy, and each of them consists of two parts, the integrals involving u�(x, t) and involving u+(x, t), respectively.
That is,
Z b

a
uðx; y; tÞdy ¼

Z sðx;tÞ

a
u�ðx; y; tÞdy þ

Z b

sðx;tÞ
uþðx; y; tÞdy ð3:3Þ
and
 Z b

a
f ðuðx; y; tÞ; x; yÞdy ¼

Z sðx;tÞ

a
f ðu�ðx; y; tÞ; x; yÞdy þ

Z b

sðx;tÞ
f ðuþðx; y; tÞ; x; yÞdy: ð3:4Þ
As in the 1D case, we regard s(x, t) as the unknown in Eq. (3.2) and view u(x,y, t) as known. Under this con-
sideration, both the integrals in (3.3) and (3.4) are functions of the discontinuity position s(x, t) and x and t,
and we denote them by U(a,b)(s(x, t)) and F(a,b)(s(x, t),x, t), respectively. With this notation, Eq. (3.2) reads
1. The solution is piecewise smooth and involves only one discontinuity curve, which is described by a function y = s(x, t) at time t.

Fig. 3.
rectang
curve s

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1559
oU ða;bÞðsðx; tÞÞ
ot

þ oF ða;bÞðsðx; tÞ; x; tÞ
ox

þ Gða;bÞðx; tÞ ¼ 0 ð3:5Þ
with G(a,b)(x, t) = g(u+(x,b, t), x,b) � g(u�(x,a, t),x,a) the vertical flux difference between a and b. This partial
differential equation describes the evaluation of the discontinuity curve in the solution region with s(x, t) as the
curve point at x.

The form of Eq. (3.5) looks familiar to us, a 1D conservation law with a source term G(a,b)(x, t), which is the
y-flux difference between y = a and y = b. The only difference is that the unknown s(x, t) appears in a (non-
linear) function U(a,b). The physics Eq. (3.5) describes is still the conservation of u. More precisely, if we draw
a rectangle with y = a the bottom, y = b the top, x = x the left edge and x = x + Dx the right edge with
Dx! 0, see Fig. 3.2(a), then what (3.5) says is that the variation of the total volume of u in the rectangle
is balanced by the flow-in and -out through the boundary of the rectangle. This variation of u causes the move-
ment of the discontinuity curve in the rectangle, driving the curve either up or down.

The solution to (3.1) satisfies the Hugoniot condition across the discontinuity curve, which reads
½u� os
ot
þ ½f � os

ox
¼ ½g� ð3:6Þ
with x and t viewed as the independent variables, where [u], [f] and [g] are the jumps of the solution and the
two fluxes across the discontinuity (see [23]). A quick calculation also shows that (3.5) and (3.6) are equivalent
to each other; both describing the evolution of the discontinuity curve in the solution. However, Eq. (3.5) is in
a conservation form and (3.6) is not. It is seen that Eq. (3.6) is hyperbolic and it has an eigenvalue [f]/[u], which
is just the x-component of the propagation velocity of the discontinuity. Because of the equivalency between
the two equations, Eq. (3.5) is also hyperbolic and [f]/[u] is its eigenvalue.

As in the 1D case, the discontinuity curve s(x, t) is not necessary between y = a and y = b. It can be in the
situation as shown in Fig. 3.2(b) or even totally out of the rectangle. We should bear this in mind when devel-
oping our 2D front-tracking method in the following discussion.

Unlike the 1D case, Eq. (3.5) can not be straightforwardly integrated. Nevertheless, it can be numerically
simulated and its hyperbolicity and conservation feature allow its numerical solution to enjoy many well-
developed numerical methodologies, which will be seen in the following discussion.

When a discontinuity curve is described by a smooth function s = s(y, t), the analogous discussion can be
proceeded as well and the result is the same, but with a shift of the two space dimensions. As a matter of fact, a
general discontinuity curve can always be divided into finitely many parts each of which can be either
y=b

y=a

x=x x=x+Δx
discontinuity
curve

flow—out

flow—in

a y=b

y=a

x=x x=x+Δx

discontinuity
curve

flow—out

flow—in

b

T

2. (a) The variation of the total volume of u in the rectangle is balanced by the flow-in and -out through the boundary of the
le, which causes the movement of the discontinuity curve in it. (b) The physical explanation in (a) still holds even when part of the
egment is out of the rectangle.

1560 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
described as s = s(y, t), called an xx-part, or s = s(x, t), called a yy-part. It will be seen in the following discus-
sion that our 2D front-tracking is developed on the basis of this fact.

3.2. Numerical implementation

3.2.1. Structure of solution

As in the 1D method, our numerical solution is defined on a fixed Cartesian grid. The grid cells harboring
no discontinuity curve are called smooth cells, and the grid cells harboring a segment of discontinuity curve
are called discontinuity cells. In a smooth cell the numerical solution is a cell-average approximation to the
exact solution
un
i;j ’

1

h2

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

uðx; y; tnÞdx: ð3:7Þ
However, in a discontinuity cell the numerical solution has three cell-average approximations, the left cell-
average un;�

i;j , which is a cell-average approximation to the smooth solution and its extension on the left of
the tracked discontinuity curve, the right cell-average un;þ

i;j , which is a cell-average approximation to the
smooth solution and its extension on the right of the tracked discontinuity curve, and the ordinary cell-average
un

i;j, which is the cell-average approximation to the exact solution involving the tracked discontinuity curve.
The left and right cell-averages are actually two ‘‘ghost’’ states used to describe the numerical solution and
its extension on the two sides of the tracked discontinuity curve.

What is different from the 1D method is that we now have three different types of discontinuity cells defined
by how they are crossed by the discontinuity curve. We postulate that the discontinuity curve intersects only
two of the cell-edges when it crosses a discontinuity cell. The discontinuity cells are then classified into xx-type,
of which the two x-edges (horizontal edges) of a cell are intersected, the yy-type, of which the two y-edges
(vertical edges) of a cell are intersected, and the xy-type, of which an x-edge and a y-edge of a cell are inter-
sected. Fig. 3.3 shows a situation of smooth cells and discontinuity cells. All the discontinuity cells and their
related information of a tracked discontinuity curve are stored in a doubly linked list, which is called a front.

Our 2D method also involves a ‘‘stack-technique’’ to handle the close-to-each-other discontinuity cells. A
grid cell may host more than one discontinuity cells and they are neighboring to each other. Any two neigh-
boring critical cells in the stack share a common cell-average, which is either the left or the right cell-average of
Fig. 3.3. Smooth cells and discontinuity cells in two space dimensions. Here DC stands for discontinuity cell.

a b c

Fig. 3.4. The stack situation in (a) is allowed and the stack situations in (b) and (c) are not allowed.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1561
each of the two neighboring discontinuity cells. This means that we allow only the stack situation as shown in
Fig. 3.4(a) and do not allow the stack situation as shown in Fig. 3.4(b) and (c). In a stack of discontinuity cells
each member has two pointers pointing to its left and right neighbors in the stack. A stacked discontinuity cell
is treated in our method as a single discontinuity cell with its left and right cell-averages as the smooth solution
on its two sides.

In each step of computation we need to produce an auxiliary front for every front in which each xy-type
discontinuity cell, if possible, should be reshaped with one of its neighbor xy-type discontinuity cells on the
front to produce an xx- or yy-type discontinuity cell, which is called a reshaped discontinuity cell. For exam-
ple, the two neighboring xy-type discontinuity cells Di,j and Di,j�1 as shown in Fig. 3.5(a) will be reshaped as a
pair of yy-type discontinuity cells as shown in Fig. 3.5(b) and (c). In the reshaping, each discontinuity cell
drops its discontinuity position on the x-edge and gets its neighbor’s discontinuity position on the y-edge
as one of its discontinuity position. The reshaped yy-type discontinuity cells are different from the ordinary
yy-type discontinuity cells in that parts of their volumes are pulled out by their out-of-cell discontinuity posi-
tions on the y-edges. For the pair of reshaped yy-type discontinuity cells, the left and right cell-averages in
them are still the ones in the original xy-type cells; however, the ordinary cell-averages over them should
be recomputed as
Fig. 3.
(b) and
positio
y-edge
un
i;j :¼ un

i;j þ un
i;j�1 � un;�

i;j�1 ð3:8Þ
and
un
i;j�1 :¼ un

i;j þ un
i;j�1 � un;þ

i;j ; ð3:9Þ
respectively, which comes from the observation that the out-of-cell discontinuity positions on the y-edges pull
parts of the volumes of the discontinuity cells out of the cells.

The reshaping to produce a pair of xx-type discontinuity cells on a front is analogous. When the tracked
discontinuity curve is smooth and the grid is fine enough, in most cases an xy-type discontinuity cell has at
least one of its neighbor cells on the front being of xy-type with which it can be reshaped. However, very often
a b c

5. Two neighboring xy-type discontinuity cells shown in (a) are reshaped to produce a pair of yy-type discontinuity cells as shown in
(c). Each discontinuity cell drops its discontinuity position on the x-edge and gets its neighbor discontinuity cell’s discontinuity

n on the y-edge. Part of the volume of each reshaped discontinuity cell is pulled out by its out-of-cell discontinuity positions on the
s.

1562 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
an xy-type discontinuity cell has both of its neighbor discontinuity cells on the front being of xy-type with
which it can be reshaped. To avoid this dilemma we produce the auxiliary front for each front alternatively
favoring the x- and y-directions in time, that is, in one time step we reshape the discontinuity cell in xx-type
when the situation occurs and in the next time step we reshape the cell in yy-type. Therefore, for a front with a
given favored direction the auxiliary front is uniquely determined. The production of an auxiliary front is
actually the numerical division of the front into xx- and yy-parts. Fig. 3.6 shows an auxiliary front produced
favoring the y-direction. As we can see from the figure that not all xy-type discontinuity cells are reshaped in
an auxiliary front even for a smooth discontinuity curve; there are still single xy-type discontinuity cells and
they occur at joints of xx-parts and yy-parts of the front.

All the discontinuity cells and their related information of an auxiliary front are also stored in a doubly linked
list. The reshaped discontinuity cells on an auxiliary front inherit the ‘‘stack’’ relations on the original front.

As in the 1D method, there is also a grid map to indicate whether a grid cell is a smooth cell or hosts dis-
continuity cells, and if the cell hosts a stack of discontinuity cells the map also stores the addresses of the top
and bottom members of the stack in the doubly linked lists of the fronts or the auxiliary fronts they belong to.
In this way, the solution is structured in an ‘‘I-know-only-my-neighbors’’ fashion, that is, in each grid cell,
either smooth or discontinuity, one can find its neighbor cells by the grid map and the doubly linked list of
the front and the doubly linked list of the stack in the grid cell.

3.2.2. Computing solution in smooth regions

Since stacked discontinuity cells are treated as single discontinuity cells, in the following discussion we con-
sider only the case without stack.

We employ a finite-volume scheme
Fig. 3.
of its n
front.
unþ1
i;j ¼ un

i;j � kðf̂ n
iþ1=2;j � f̂ n

i�1=2;jÞ � kðĝn
i;jþ1=2 � ĝn

i;j�1=2Þ ð3:10Þ
defined on the fixed Cartesian grid for the computation of smooth regions, where un
i;j is the cell-average

approximation to the exact solution and f̂ n
iþ1=2;j and ĝn

i;jþ1=2 are the flux average approximations to f(u,x,y)
and g(u,x,y) on the y- and x-cell-interfaces oDi+1/2,j and oDi,j+1/2, respectively,
f̂ n
iþ1=2;j ’

1

hs

Z tnþ1

tn

Z yjþ1=2

yj�1=2

f ðuðxiþ1=2; y; tÞ; xiþ1=2; yÞdy dt ð3:11Þ
6. An auxiliary front produced favoring the y-direction, on which every xy-type discontinuity cell, if possible, is reshaped with one
eighbor cells to form an xx- or yy-type discontinuity cell. There are still some single xy-type discontinuity cells on the auxiliary

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1563
and
ĝn
i;jþ1=2 ’

1

hs

Z tnþ1

tn

Z xiþ1=2

xi�1=2

gðuðx; yjþ1=2; tÞ; x; yjþ1=2Þdxdt; ð3:12Þ
which are consistent with the flux functions f(u,x,y) and g(u,x,y) as in the one-dimensional case, and k = s/h is
the mesh ratio with s and h being the time and space increments of the grid, respectively.

As in the 1D case, the computation of each smooth region is carried out using the information only from
the same region. Thus, it proceeds in the following fashion in the left and right regions of a front, respectively:
unþ1
i;j ¼ un

i;j � kðf̂ n;�
iþ1=2;j � f̂ n;�

i�1=2;jÞ � kðĝn;�
i;jþ1=2 � ĝn;�

i;j�1=2Þ ð3:13Þ
if the grid cell Di,j is a smooth cell, ‘‘�’’ for the left region and ‘‘+’’ for the right region, and
unþ1;�
i;j ¼ un;�

i;j � kðf̂ n;�
iþ1=2;j � f̂ n;�

i�1=2;jÞ � kðĝn;�
i;jþ1=2 � ĝn;�

i;j�1=2Þ ð3:14Þ
if Di,j is a discontinuity cell. Here f̂ n;� and ĝn;� are evaluated in the way that when data across the discontinuity
curve are required the smooth extension data from the same sides are provided. If the scheme (3.10) is con-
structed from a semi-discretization of (3.1) with the temporal derivatives being discretized in a Runge–Kutta
fashion, the evaluation of f̂ n;� and ĝn;� needs only the extension data in the horizontal and vertical directions.
No data in diagonal directions is required (see [24,27]). In doing this, the ‘‘I-know-only-my-neighbors’’ struc-
ture of the solution allows us to easily produce the smooth data used in evaluating f̂ n;� and ĝn;� in (3.13) or
(3.14). When discontinuity cells are close to each other or even stacked in the same grid cells, the extension
data used are obtained by low-order or even zeroth-order extrapolation because there are no enough grid cells
to implement high-order extrapolation.

Once the cell-averages in all smooth cells and the left and right cell-averages in all discontinuity cells are
computed, the solution in all smooth regions, including the smooth regions between stacked discontinuity
cells, and its extension near discontinuities can then be reconstructed via interpolation and extrapolation.
Since the solution is defined on a fixed Cartesian grid, the reconstruction can be accomplished dimen-
sion-by-dimensionly using 1D reconstruction. However, when discontinuity cells are closed to each other
or even stacked in the same grid cell, the reconstruction can only be accomplished with low-order or even
zeroth-order interpolations due to the lack of enough grid cells. Now we can reconstruct the solution in
smooth regions at tn and tn+1, respectively, using the cell-averages in the regions at the two time levels,
and in the following discussion we denote the reconstructed solution in smooth regions by u without risk
of ambiguity.

Moreover, the flow fluxes across all cell-interfaces in all smooth regions during the time step can also be
reconstructed from the information obtained in evaluating numerical fluxes on cell-interfaces. For example,
if the underlying scheme is constructed from a semi-discretization of (3.1) with the temporal derivatives being
discretized in a Runge–Kutta fashion, the prediction values of f ðu�; x; yÞ in all the time stages in the
Runge–Kutta procedure are the necessary information for the reconstruction of flow fluxes on cell-interfaces.
In the following discussion we denote by fi+1/2(y,t) and gjþ1=2ðx; tÞ the flow fluxes on the vertical cell-interfaces
at xi+1/2 and on the horizontal cell-interfaces at yj+1/2, respectively.
3.2.3. Tracking discontinuity curves

3.2.3.1. Tracking on a yy-part auxiliary front without reshaped discontinuity cells. Now we are going to compute
the ordinary cell-averages in discontinuity cells and then track the discontinuity curve with the reconstructed
solution in smooth regions u at tn and tn+1 and the reconstructed flow fluxes fiþ1=2ðy; tÞ’s at xi+1/2’s and
gjþ1=2ðx; tÞ’s at yj+1/2’s in smooth regions. This is the main ingredient of our 2D front-tracking method. The
tracking is implemented on auxiliary fronts. For the clarity of discussion, we are first concerned with a yy-part
of front consisting of only ordinary yy-type discontinuity cells between horizontal grid lines y ¼ yj1�1=2 and
y ¼ yj1þ1=2 as shown in Fig. 3.7, and no reshaped discontinuity cells are involved. Without loss of generality,
we still assume that u- is below the curve and u+ above the curve. We now take a ¼ yj1�1=2 and b ¼ yj1þ1=2 in
(3.3)–(3.5), and for the simplicity of discussion we drop the dependency of U, F and G on yj1�1=2 and yj1þ1=2 in

xi
1
—1/2 xi

1
+1/2

yj
1
+1/2

yj
1
—1/2

Δi
1
,j

1

Fig. 3.7. The tracked discontinuity curve is of yy-part consisting of only ordinary yy-type discontinuity cells between horizontal grid lines
y ¼ yj1�1=2 and y ¼ yj1þ1=2.

1564 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
the following discussion. It is easy to see from (3.3) that the cell-averages of U(s(x, t)) over the cells
ðxi�1=2; xiþ1=2Þ’s on the x-sub-grid at tn and tn+1 are the ordinary cell-averages in the discontinuity cells
1

h

Z xiþ1=2

xi�1=2

Uðsðx; tkÞÞdx ¼ huk
i;j1
; k ¼ n; nþ 1; i ¼ i1; i1 � 1; . . . ; ð3:15Þ
therefore, computing the ordinary cell-averages and tracking the discontinuity curve then become a job of
numerical simulation of (3.5) on the x-sub-grid. Integrating (3.5) over (xi�1/2,xi+1/2) · (tn, tn+1) and dividing
it by h, we obtain
hunþ1
i;j1
¼ hun

i;j � kðbF n
iþ1=2 � bF n

i�1=2Þ þ
1

h

Z tnþ1

tn

dt
Z xiþ1=2

xi�1=2

Gðx; tÞdx; ð3:16Þ
where according to (3.2)
1

h

Z tnþ1

tn

dt
Z xiþ1=2

xi�1=2

Gðx; tÞdx ¼ s ĝn;þ
i;j1þ1=2 � ĝn;�

i;j1�1=2

� �
; ð3:17Þ
which is known from the previous computation of smooth regions, and
bF n
iþ1=2 ¼

1

s

Z tnþ1

tn

Z sðxiþ1=2;tÞ

yj1�1=2

f �iþ1=2ðy; tÞdy þ
Z yj1þ1=2

sðxiþ1=2;tÞ
f þiþ1=2ðy; tÞdy

()
dt; ð3:18Þ
which involves the unknown discontinuity positions s. Thus, the main task in the numerical simulation of (3.5)
is the numerical evaluation of the flux function (3.18). As we have pointed out in the introduction, the job can
enjoy many well-developed numerical methodologies for 1D conservation laws.

We are going to implement our numerical simulation of (3.5) in a Godunov fashion, and it proceeds as
usual in the following three steps:

Step-R. Reconstruct U(s(x, tn)) and then the discontinuity curve at tn.
Step-E. Evaluate the fluxes (3.18) on the cell-interfaces of the x-sub-grid using the reconstructed disconti-
nuity curve.
Step-A. Compute the ordinary cell-averages of U(s(x, tn+1)) on the x-sub-grid at tn+1 and then reconstruct
the discontinuity curve at tn+1.

This can be implemented in many different ways with different accuracies.
First-order discretization

Step-R. The function U(s(x, tn)) at tn is reconstructed as a piecewise constant function
Uðsðx; tÞÞ ’ Rnðx; UÞ ¼ hun
i;j1
; i ¼ i1; i1 � 1; . . . : ð3:19Þ
in each cell on the x-sub-grid. Once U(s(x, tn)) is reconstructed the discontinuity curve s(x, tn) can then be recon-
structed by solving (3.3), in which u±(x,y, tn), the reconstructed solution in the smooth regions on the two sides,

xi
1
—1/2 xi

1
+1/2

yj
1
+1/2

yj
1
—1/2

xi
1
—3/2

xi
1
+3/2

Fig. 3.8. In the first-order discretization the discontinuity curve is reconstructed as a set of horizontal line segments in all the yy-type
discontinuity cells if the solution in smooth regions is reconstructed piecewise-constantly.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1565
are known. As we have mentioned in the 1D case, the Eq. (3.3) admits a unique solution if h is small and u± do
not vary rapidly on the two sides. In particular, if the solution in smooth regions is reconstructed piecewise-con-
stantly, the reconstructed discontinuity curve in each discontinuity cell is a segment of horizontal line
sðx; tnÞ ¼ sn
i ¼ yj1

þ h
un

i;j1
� un;�

i;j1

un;þ
i;j1
� un;�

i;j1

; i ¼ i1; i1 � 1; . . . ð3:20Þ
as shown in Fig. 3.8. Also if (3.1) is a system and we then have three of Eq. (3.3), the reconstructed discon-
tinuity curve in the cell should be taken as an average of certain kind of the three curve segments solved from
(3.3) as in the 1D case.

Step-E. The fluxes F(s(x, t), x, t) in (3.18) on cell-interfaces of the x-sub-grid are evaluated in the Euler-for-
ward fashion in time using the flow fluxes reconstructed on the vertical cell-interfaces in smooth regions and
the reconstructed discontinuity curve. That is, the fluxes on the two cell-interfaces of the cell (xi�1/2,xi+1/2) are
evaluated as
bF n
i�1=2 ¼

Z sn
i�1=2

yj1�1=2

f �i�1=2ðy; tnÞdy þ
Z yj1þ1=2

sn
i�1=2

f þi�1=2ðy; tnÞdy ð3:21Þ
with f± being the reconstructed flow fluxes on the cell-interfaces in the left and right smooth regions. In par-
ticular, if the flow fluxes are also reconstructed piecewise-constantly, we simply have
bF n
i�1=2 ¼ ðsn

i�1=2 � yj1�1=2Þf n;�
i�1=2 þ ðyj1þ1=2 � sn

i�1=2Þf
n;þ
i�1=2: ð3:22Þ
The discontinuity positions sn
i�1=2 in (3.21) and (3.22) are approximations to s(xi±1/2, tn), and they can be com-

puted, for example, as
sn
i�1=2 ¼

1

2
ðsn

i þ sn
i�1Þ: ð3:23Þ
However, a better way is to compute them in the following up-wind fashion. To compute sn
iþ1=2, we first com-

pute an approximate local eigenvalue [f]/[u] of Eq. (3.5). For example, it can be computed as
eig ¼ 1

2

f ðun;þ
i;j1
Þ � f ðun;�

i;j1
Þ

un;þ
i;j1
� un;�

i;j1

þ
f ðun;þ

iþ1;j1
Þ � f ðun;�

iþ1;j1
Þ

un;þ
iþ1;j1

� un;�
iþ1;j1

()
: ð3:24Þ
Then sn
iþ1=2 is computed as
sn
iþ1=2 ¼

sn
i ; eig > 0;

sn
iþ1; eig 6 0:

�
ð3:25Þ
Step-A. Once the flux functions bF are evaluated, the ordinary cell-averages in the discontinuity cells at tn+1

are computed as
unþ1
i;j1
¼ un

i;j1
� k

h
ðbF n

iþ1=2 � bF n
i�1=2Þ � kðĝn;þ

i;j1þ1=2 � ĝn;�
i;j1�1=2Þ; i ¼ i1; i1 � 1; . . . ð3:26Þ

1566 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
with ĝn;þ
i1;j1þ1=2 and ĝn;�

i1;j1�1=2 the two vertical numerical fluxes used in computing the smooth solution u+ and u�,
respectively. After the ordinary cell-averages at tn+1 are computed in all the discontinuity cells, the disconti-
nuity curve at tn+1 can then be reconstructed as in Step-R using the reconstructed solution in smooth regions
at tn+1.

Second-order discretization.

Step-R. The function U(s(x, tn)) at tn is now reconstructed as a piecewise linear function
Fig. 3
discon
Uðsðx; tÞÞ ’ RnðU ; xÞ ¼ hun
i;j1
þ nn

i ðx� xiÞ; i ¼ i1; i1 � 1; . . . : ð3:27Þ
in each cell of the x-sub-grid. Here nn
i is the slope which approximates oUðsðx;tÞÞ

ox jxi
and can be computed as a

convex combination of Dþi un
i;j1

and D�i un
i;j1

. Slope limiters, such as that of TVD or ENO may be used in the
reconstruction for the purpose of stability. Once U(s(x, tn)) is reconstructed the discontinuity curve s(x, tn)
can also be reconstructed by solving (3.3) as in the first-order case. Generally, the reconstructed discontinuity
curve segment will not be linear. A situation of this is shown in Fig. 3.9.

Step-E. Once the discontinuity curve is reconstructed in each cell of the x-sub-grid, we have at each cell-
edge xi+1/2 at tn two discontinuity positions, one from the left discontinuity cell and the other from the right
discontinuity cell. The discontinuity position sn

iþ1=2 can then be computed either in an average fashion as in
(3.23) or in an up-wind fashion as in (3.24) and (3.25).

In the following we are going to evaluate the flux (3.18) on cell-interfaces of the x-sub-grid using midpoint
integral, and to this end we need to compute snþ1=2

i�1=2 , the approximations to s(xi±1/2, tn+1/2). They can be com-
puted by the so-called local Cauchy–Kowalevski procedure using (3.5) [10]. That is, by the Taylor expansion
and from Eq. (3.5) we have
sðx; tnþ1=2Þ ¼ sðx; tnÞ þ
s
2

os
ot
jtn þOðs2Þ ¼ sðx; tnÞ �

s
2

½f �
½u�

os
ox

� �
jtn þ

½g�
½u�

� �
jtn

� �
þOðs2Þ: ð3:28Þ
Then snþ1=2
i�1=2 can be computed by replacing the terms on the RHS of (3.28) with the reconstructed ones and

truncating the O(s2) error. Once snþ1=2
i�1=2 are computed, the fluxes (3.18) on cell-interfaces of the x-sub-grid

are computed with a midpoint integral, that is
bF n
iþ1=2 ¼

Z snþ1=2

iþ1=2

yj1�1=2

f �iþ1=2ðy; tnþ1=2Þdy þ
Z yj1þ1=2

snþ1=2

iþ1=2

f þiþ1=2ðy; tnþ1=2Þdy:

(
ð3:29Þ
Step-A. Again we can compute the cell-averages of U(s(x, tn)) at tn as in (3.26) and then reconstruct the dis-
continuity curve as in Step-R using the reconstructed solution in smooth regions at tn+1.

Remark 3.1. The temporal evolution, i.e. Step-E and Step-A can also be implemented in the manner of
method of lines using a Runge–Kutta discritization in time.

Remark 3.2. The front-tracking algorithm tested in the following section is a partially second-order discreti-
zation, in which the discontinuity curve is reconstructed in the first-order fashion. Nevertheless, the numerical
results are quite promising.

Higher-order discretization
Step-R. We reconstruct the function U(s(x, tn)) as a piecewise rth-order polynomial, and this can be accom-

plished by the reconstruction via primitive functions. A detailed description of the procedure can be found in
xi
1
—1/2 xi

1
+1/2

yj
1
+1/2

yj
1
—1/2

xi
1
—3/2

xi
1
+3/2

.9. In the second-order discretization the discontinuity curve is reconstructed as a set of curve segments in all the yy-type
tinuity cells.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1567
[24]. Once U(s(x, tn)) is reconstructed, the discontinuity curve segment in each discontinuity cell can be recon-
structed by solving (3.3).

Step-E. The numerical fluxes are evaluated by using a numerical quadrature with the prediction values of
s(xi+1/2, t) at fraction time steps on cell-interfaces of the x-sub-grid. The prediction values of s(xi+1/2, t) can still
be obtained by the Taylor expansion and using Eq. (3.5), the so-called local Cauchy–Kowalevski procedure.
However, to achieve the higher-order accuracy, the Taylor expansion must include higher-order terms in t,
which are then evaluated by replacing the t-derivatives with the x-derivatives using Eq. (3.5) and truncating
the O(sr) error.

Step-A. It proceeds just as in the first- and second-order discretizations.

Remark 3.3. As in the previous case, the temporal evolution, i.e. Step-E and Step-A can also be implemented
in the manner of method of lines using a Runge–Kutta discretization in time.

Remark 3.4. One may use the Hugoniot condition (3.6) to do the front-tracking, discretizing it on the fixed
Cartesian grid and embedding it into the computation of smooth regions as is done in the above discussion,
and the resulting method is also Cartesian-grid-based. The paper [27] described a front-tracking method in 2D
built in such a way and tested it on numerical examples of piecewise smooth solutions. However, the method
built on the basis of Eq. (3.6) is not conservative.
3.2.3.2. Tracking on a general auxiliary front. Now we are going to discuss the implementation of tracking on a
general auxiliary front. Principally speaking, if we bear in our minds Fig. 3.2(b), i.e. the discontinuity curve
can be partially or even totally out of the rectangle, the tracking of a yy-part front with reshaped discontinuity
cells is almost the same as that of the front without reshaped discontinuity cells. The only difference is that Eq.
(3.15) may be revised in some of the cells on the x-sub-grid. For example, if we have an auxiliary front as
shown in Fig. 3.10, then the cell-average of U in the grid cell ðxi1þ1=2; xi1þ3=2Þ is
Fig. 3.
ðxi1þ1=2
1

h

Z xi1þ3=2

xi1þ1=2

Uðsðx; tnÞÞdx ¼ hðun
i1þ1;j1�1 � un;�

i1þ1;j1�1 þ un
i1þ1;j1

Þ ð3:30Þ
instead of (3.15), where un
i1þ1;j1�1 is the ordinary cell-average in the yy-discontinuity cell Di1þ1;j1�1 and un

i1þ1;j1
is

the cell-average in the smooth cell Di1þ1;j1
that belongs to the right smooth region.

The computation and tracking of an xx-part of a front is analogous. Now the remaining thing is the com-
putation and tracking in single xy-type discontinuity cells on auxiliary fronts. Principally speaking, the recon-
struction in an xy-type discontinuity cell is proceeded using information extrapolated from its neighbor cells
of xx- or yy-type, either ordinary or reshaped; however, certain slope limiters are involved for maintaining
the stability of reconstruction. Once the discontinuity curve is reconstructed in the cell, flow fluxes across
the cell-interfaces can also be evaluated, and then the ordinary cell-average can be updated in time in a
finite-volume fashion, and then the discontinuity curve at tn+1 can be reconstructed as well. However, we
10. A yy-part of front involving reshaped yy-type discontinuity cells. In this case, (3.15) should be revised as (3.30) in the grid cell
; xi1þ3=2Þ.

a b

Fig. 3.11. When the tracked discontinuity curve involves corners, we may have single xy-type discontinuity cells on an auxiliary front as
shown in (a) and (b).

1568 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
may have situations of single xy-type discontinuity cells as shown in Fig. 3.11(a) and (b), where obviously the
tracked discontinuity curve has corners in these cells. At these points, the accuracy of the reconstruction with
the slope limiters degenerates, which will be clearly seen in the numerical examples in the following section.
As a matter of fact, these are the only points where the current version of our front-tracking method loses
accuracy.

3.2.4. Moving and collisions of discontinuities

The discontinuity curve at tn+1 moves to a new position, which causes some discontinuity cells to disappear
and some to be generated. In our 2D method, this is accomplished by transforming the auxiliary fronts at tn+1

back to ordinary fronts based on the reconstructed discontinuity curves and the solution in smooth regions at
this time level.

We need first to reconstruct a continuous discontinuity curve for each front. To this end, we first note that
any pair of reshaped discontinuity cells share a common segment of discontinuity curve (see Fig. 3.5), and
their reconstructions in the two discontinuity cells are usually different. To cope with this situation, we take
the final segment as the average of the two reconstructed ones. Secondly, the discontinuity curve thus recon-
structed is not continuous and it breaks at some cell-edges (see Figs. 3.8 and 3.9). However, this can be fixeded.
For example, if the first-order discretization is used in the previous computation and the reconstructed seg-
ments of the curve are as in Fig. 3.8, we can then compute the discontinuity positions at cell-edges as
(3.23) and link them with line segments to form a continuous and piecewise linear reconstruction for the dis-
continuity curve. High-order continuous reconstruction can be accomplished as well.

The transformation of an auxiliary front back to an ordinary front will involve integrals of the typeR R
ðuþ � u�Þdxdy over many triangles cut off by the discontinuity curves from the fixed Cartesian grid. For

example, if we have two reshaped yy-type discontinuity cells as shown in Fig. 3.5(b) and (c) at tn+1, then they
will be transformed back to two xy-type discontinuity cells as shown in Fig. 3.5(a). The discontinuity position
on the common horizontal cell-edge of the two transformed discontinuity cells is computed as the intersection
point of the discontinuity curve with the cell-edge. The ordinary cell-averages over the two transformed xy-
type discontinuity cells can be computed, from the view of Di,j, as
unþ1
i;j :¼ unþ1

i;j � I1;

unþ1
i;j :¼ unþ1;�

i;j�1 þ I1;
ð3:31Þ
where
I1 ¼
Z Z

T 1

ðuþðx; y; tnþ1Þ � u�ðx; y; tnþ1ÞÞdxdy ð3:32Þ
with the triangle T1 as shown in Fig. 3.5(b). The integral I1 can be evaluated by numerical quadratures. In
doing so, the conservation properties of the solution are preserved. However, the ordinary cell-averages over
the two transformed xy-type discontinuity cells can also be computed, from the view of Di,j�1, as

Fig. 3.
front s

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1569
unþ1
i;j :¼ unþ1;þ

i;j þ I2;

unþ1
i;j�1 :¼ unþ1

i;j�1 � I2;
ð3:33Þ
where
I2 ¼
Z Z

T 2

ðu�ðx; y; tnþ1Þ � uþðx; y; tnþ1ÞÞdxdy ð3:34Þ
with the triangle T2 as shown in Fig. 3.5(c). To avoid favoring any one of the two discontinuity cells, in our
algorithm we take the average of (3.31) and (3.33) as the final ordinary cell-averages in the two transformed
xy-type discontinuity cells.

There will be other cases, such as that either or both of the discontinuity positions of an ordinary discon-
tinuity cell move out of the grid cell, either in the same or different directions. With certain restriction on the
mesh ratio k = s/h, the algorithm allows the discontinuity positions move less than one cell width in each
direction in a time step. The transformation can be accomplished likewise for all these cases. For example,
if Di,j is an ordinary yy-type discontinuity at tn and one of its discontinuity position moves into the grid cell
Di,j�1 at tn+1 as shown in Fig. 3.5(b), then both of the cells become discontinuity cells of xy-type at the late
time. In this case,
unþ1;�
i;j�1 :¼ unþ1

i;j�1

unþ1;þ
i;j�1 :¼ extension data from the right region on top

unþ1
i;j and unþ1

i;j�1 :¼ computed from ð3:31Þ and ð3:32Þ:

8>><>>: ð3:35Þ
Single xy-type discontinuity cells on auxiliary fronts may also move or split. Two situations of this kind are
shown in Fig. 3.12. Nevertheless, the transformation can be accomplished likewise for these cases in the same
spirit. Thanks to the Cartesian-grid-based feature of our front-tracking method, the implementation of the
transformation is not quite complex.

Collisions of discontinuity curves are not addressed in this paper. As is well known, handling collisions of
discontinuity curves is really a hard nut for all front-tracking methods, especially in 2D and 3D due to lack of
sufficient knowledge about 2D or 3D Riemann problems. We are trying to cope with this problem also by
enforcing the conservation properties of the solution, without using the knowledge of 2D Riemann problems.
The research has achieved success in some simple examples, two of which were presented in [24], one is for the
2D Burger’s equation and the other is for the Euler system. However, this part of the algorithm has not been
well matured enough yet to be presented in this paper, and we wish to address this issue in our future papers in
this series after further development of the method.

3.2.5. Propagation of waves in other characteristic fields

As in the 1D method, if (3.1) is a system of equations, there will be several characteristic fields and thus
several different kinds of discontinuities. When tracking a discontinuity of a certain kind, waves in other char-
a b

12. (a) A single xy-type discontinuity cell on an auxiliary front moves and (b) a single xy-type discontinuity cell on an auxiliary
plits.

1570 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
acteristic fields may propagate across it. This situation should also be treated properly in our 2D method.
Principally speaking, 1D Riemann problems are solved at the discontinuity curve in the normal directions,
and based on which informations related to the other characteristic fields are separated from the cell-averages
in the discontinuity cell and then transferred to the corresponding sides. As in the 1D method, certain inte-
grals should be evaluated numerically in the treatment; however, they are now over 2D areas, triangles, trap-
ezoid and pentagons, and they can be easily computed thanks to the Cartesian-grid-based feature of the
method.

3.3. Summary

Thus, we completed the description of our 2D conservative front-tracking method. Like the 1D method, the
2D method also has the following features: (1) Based on the philosophy of the Lax–Wendroff theorem, the
method tracks discontinuities by enforcing the conservation properties of the solutions. This conservation fea-
ture of the method, together with the accuracies of the underlying scheme (3.10) and the numerical discreti-
zation of (3.5), guarantees the accuracy of the tracking on discontinuity curves away from corners, which
will be seen in the numerical examples presented in the following section. A strict analysis of truncation error
of the method under the assumption that the tracked discontinuity curve is smooth is underway and will be
addressed in our future paper in the series. (2) The method is also Cartesian-grid-based. Actually, it is formu-
lated as consisting of a 2D capturing and a 1D capturing, the former computing the solution in smooth regions
and the latter tracking discontinuities. Both the 1D and 2D capturings are implemented on the same fixed
Cartesian grid; therefore, the data structures involved are much simpler and the algorithm is much easier
to code compared with those of other 2D front-tracking methods. Moreover, the method completely gets
rid of the small-cell problem that bothers most 2D front-tracking methods. Development of an all-purposed
code of the 2D method, written in Fortran90 in an object-oriented fashion and including the treatment of col-
lisions of discontinuity curves and spontaneous shocks, is now in progress.

Finally, we would like to make a comparison of our conservative front-tracking method with the VOF
methods, which track fluid interfaces also by enforcing the conservation properties of solution in some
way. The difference of our method from the VOF methods is that our method tracks discontinuity curves
by numerically simulating (3.5) for a yy-part of a discontinuity curve or its counterpart for an xx-part. In
computation, by producing an auxiliary front for a front it divides a tracked discontinuity curves into xx-
and yy-parts and then implements the simulation on each of them on the x- or y-sub-grid. In this way, the
reconstruction and evolution of a tracked discontinuity curve in our method are much simpler than that of
the VOF methods. We believe that this approach is applicable to the VOF methods to simplify their recon-
structions and evolutions of fluid interfaces, though the VOF methods do not have connectivity between dis-
continuity cells.

4. Numerical experiments

In this section we present several numerical examples to show the efficiency and effectiveness of our 2D con-
servative front-tracking method. A second-order finite-volume scheme is employed in our method for the com-
putation of solutions in smooth regions, an old version of TVD scheme developed in [32] for the scalar
equations and a WENO scheme [14] for the Euler system, and then the solutions in smooth regions are recon-
structed also with second-order accuracy. As is stated in Remark 3.2, the method tested here is partially of
second-order accuracy in that discontinuity curves are reconstructed in a first-order fashion with (3.23) for
the computation of their positions. However, the numerical fluxes (3.18) is evaluated second-orderly as in
(3.29) with the predicted values snþ1=2

iþ1=2 ’s being computed with the Cauchy–Kowalevski procedure as described
by (3.28). The continuous discontinuity curve is reconstructed as described in the second paragraph in Section
3.2.4. The transformation of auxiliary fronts back to ordinary fronts is second-order accurate with all the inte-
grals evaluated numerically with second-order accuracy. The wave propagation in other fields is treated also
second-orderly in that all the integrals are evaluated numerically with second-order accuracy. To ensure the
movements of discontinuity positions less than one cell width in a time step the CFL number is taken to
be 0.157 in all the examples.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1571
Contours of the numerical solutions and the tracked discontinuity curves are displayed in some examples.
Since the solutions in smooth regions can actually be reconstructed second-order-accurately, our method has
much higher resolution of solution than that of capturing methods. To illustrate this, we reconstruct the solu-
tions smooth-region-by-smooth-regionly, project the reconstructed solution onto grids 5–10 times finer than
the original ones, and then display the contours of these projected solutions.

We start with the scalar linear case and are concerned with the partial differential equation of the type
Table
L1 num

Case

Error
Rate
ut þ vðx; yÞux þ wðx; yÞuy ¼ 0; ð4:1Þ

where the velocity field is defined as
vðx; yÞ ¼ �/y and wðx; yÞ ¼ /x ð4:2Þ
with /(x,y) the stream function of the flow field. Since
vx þ wy ¼ 0; ð4:3Þ

the flow is irrotational, and Eq. (4.1) can be written in the conservation form
ut þ ðvðx; yÞuÞx þ ðwðx; yÞuÞy ¼ 0: ð4:4Þ
Four problems, simple translation, solid body rotation, single vortex and deformation field as suggested in
[33,34], are tested to assess the integrity and capability of our conservative front-tracking method in interface
tracking. The detailed descriptions of the problems can be found in [34]. In all the test problems the solution
region is the square (0, 1) · (0, 1) with periodic boundary conditions. As is stated at the beginning of this sec-
tion, the underlying finite-volume scheme (3.10) is a second-order TVD scheme of the type developed in [32]
with the temporal derivatives discretized in a predictor–corrector fashion. This is also the underlying scheme
used in [24,25,27].

Example 1. Simple translation. The stream function is chosen to be
/ðx; yÞ ¼ x� y; ð4:5Þ

which results in a velocity field
uðx; yÞ ¼ 1; vðx; yÞ ¼ 1: ð4:6Þ

There is a cycle C centered at (0.5,0.5) with radius 0.25. The initial value is set to be
uðx; y; 0Þ ¼
1; ðx; yÞ 2 C;

0; ðx; yÞ 62 C:

�
ð4:7Þ
The circular body translates diagonally across the mesh and returns to its initial position after a time unit. The
computations are carried out on 322, 642, 1282 and 2562 grids, respectively, and the L1 numerical errors and
convergence rate are displayed in Table 4.1.

Example 2. Solid body rotation. The stream function is chosen to be
/ðx; yÞ ¼ 1

2
ðx2 þ y2Þ; ð4:8Þ
which results in a velocity field
uðx; yÞ ¼ �y; vðx; yÞ ¼ x; ð4:9Þ
4.1
erical errors and convergence rate for the simple translation problem

322 642 1282 2562

4.738 · 10�3 1.762 · 10�3 5.087 · 10�4 1.607 · 10�4

– 1.427 1.792 1.663

Table 4.2
L1 numerical errors and convergence rate for the solid body rotation problem

Case 322 642 1282 2562

Error 6.054 · 10�3 1.989 · 10�3 5.198 · 10�4 1.318 · 10�4

Rate – 2.018 1.936 1.980

1572 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
a constant-vorticity velocity field. A cycle C is centered at (0.5,0.75) with radius 0.15. The initial value is set to
be
Table
L1 num

Case

T = 2
Rate
T = 4
Rate
T = 6
Rate
uðx; y; 0Þ ¼
1; ðx; yÞ 2 C;

0; ðx; yÞ 62 C:

�
ð4:10Þ
The circular body rotates around the center of the vorticity and returns to its initial position after a p-time
unit. The computations are carried out again on 322, 642, 1282 and 2562 grids, respectively, and the L1 numer-
ical errors and convergence rate are displayed in Table 4.2.

Example 3. Single vortex. The stream function is chosen to be
/ðx; yÞ ¼ 1

p
sin2ðpxÞ sin2ðpyÞ; ð4:11Þ
which results in a velocity field
uðx; yÞ ¼ � sin2ðpxÞ sinð2pyÞ; vðx; yÞ ¼ sinð2pxÞ sin2ðpyÞ; ð4:12Þ

a single vorticity. A cycle C is centered at (0.5,0.75) with radius 0.15. The initial value is set to be
uðx; y; 0Þ ¼
1; ðx; yÞ 2 C;

0; ðx; yÞ 62 C:

�
ð4:13Þ
The circular body is deformed and stretched by the velocity field. The computations are carried out on 322,
642, 1282 and 2562 grids, respectively, first to the times 1, 2 and 3, respectively, and then back to the initial
value by setting the two components of the velocity negative. The L1 numerical errors and convergence rate
are displayed in Table 4.3. In Fig. 4.1 we display the tracked interface at the time 3 and its return to initial data
at 6 on the 1282 grid. The computation keeps the numerical solution to be 1 inside the region surrounded by
the interface and 0 outside the region.

Example 4. Deformation field. The stream function is chosen to be
/ðx; yÞ ¼ 1

4p
sin 4p xþ 1

2

� �� �
cos 4p y þ 1

2

� �� �
; ð4:14Þ
which results in a velocity field
uðx; yÞ ¼ sin 4p xþ 1

2

� �� �
sin 4p y þ 1

2

� �� �
; vðx; yÞ ¼ cos 4p xþ 1

2

� �� �
cos 4p y þ 1

2

� �� �
; ð4:15Þ
4.3
erical errors and convergence rate for the single vortex problem

322 642 1282 2562

5.667 · 10�3 1.773 · 10�3 7.427 · 10�4 1.915 · 10�4

– 1.676 1.494 1.956
1.311 · 10�2 4.320 · 10�3 1.786 · 10�3 5.714 · 10�4

– 1.602 1.274 1.644
1.669 · 10�2 6.167 · 10�3 2.384 · 10�3 8.349 · 10�4

– 1.436 1.371 1.4919

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.1. Numerical results for single vortex problem. Left is the stretched interface at time = 3 and right is its return to the initial shape.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1573
a quite complex velocity field. A cycle C is centered at (0.5,0.75) with radius 0.15. The initial value is set to be
Table
L1 num

Case

Error
Rate
uðx; y; 0Þ ¼
1; ðx; yÞ 2 C;

0; ðx; yÞ 62 C:

�
ð4:16Þ
The circular body is largely deformed and stretched by the velocity field. The computations are carried out on
642, 1282 and 2562 grids, respectively, first to the time 1 and then back to the initial data as is done in the pre-
vious example to assess the numerical errors and convergence rate. In the computation on 322 gird a situation
that three discontinuities are stacked in a discontinuity cell as shown in Fig. 3.4(b) occurs, which is still a miss-
ing case in our algorithm; thus, the run of the computation fails. The tracked interface and its return to the
initial data on 1282 grid are displayed in Fig. 4.2 and the L1 numerical errors and convergence rates are dis-
played in Table 4.4.
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.2. Numerical results for deformation field problem. Left the stretched interface and right its return.

4.4
erical errors and convergence rate for deformation field problem

642 1282 2562

2.661 · 10�3 8.338 · 10�4 2.563 · 10�4

– 1.674 1.702

1574 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
It is seen that our numerical results are superior to most of the results presented in [33]. However, our
results of the last two examples are not perfect yet especially compared with the ones presented in [6,7],
though the methods presented in those two papers are much more expensive than ours and are not con-
servative. The numerical errors of our method come mainly from the spikes of the stretched and deformed
discontinuity curves; the sharp corners are blunted there and sometimes wiggles occur near the corners.
This is because the fronts there involve single xy-type discontinuity cells of the types as shown in
Fig. 3.11. As is stated in the previous discussion, our front-tracking is based on Eq. (3.5) for evolution
of smooth discontinuity curves; however, near corners of discontinuity curves Eq. (3.5) loses its sense.
To solve the problem, it seems that we need to go back to the traditional Lagrangian front-tracking in
these single xy-type discontinuity cells, i.e. advecting discontinuities with fluid velocities, while still main-
taining the conservation property of the solutions. Modification of the method based on this idea is
now underway.

We should also note in the last two examples that although our method loses accuracy near corners of the
fronts, it does not severely loses structures there as the pure level-set methods [6,33], and grid-based front-
tracking method [8] do. This should greatly thank to the conservation feature of the method. In our method
the tracked discontinuity is reconstructed by enforcing the conservation property of solutions, which keeps
pushing and dragging the discontinuity curves even near corners.

The following two examples are the Riemann problems for the 2D Burger’s equation:
ut þ
1

2
u2

� �
x

þ 1

2
u2

� �
y

¼ 0: ð4:17Þ
These two problems were first studied in [42] and later have been used by many authors to test their numerical
methods [37]. The underlying finite-volume scheme (3.10) is again a second-order TVD scheme of the type
developed in [32] with the temporal derivatives discretized in a predictor–corrector fashion as in the previous
examples.

Example 5. We solve the Riemann problem with the initial data being �0.2, �1.0, 0.5 and 0.8 in the first,
second, third and fourth quadrants, respectively. The solution to the problem has a shock interacting with
two rarefaction waves. This shock-rarefaction interactions cause several corners, discontinuities of first
derivative, on the shock curve. The shock is tracked. We compute the problem on a grid of 802 (h = 0.025)
and the numerical solution at t = 1 is displayed in Fig. 4.3. Fig. 4.3(a) and (b) shows the contour of the
projected solution on the finer grid and the tracked shock curve, respectively. For verification and
comparison we compute the same problem with the underlying scheme without the tracking, and the
contour of the solution is displayed in Fig. 4.3(c). It is seen that the result with the tracking is much
superior to that without tracking. The shock is sharpened and the corners are better resolved in the tracking
result.

Example 6. We solve the Riemann problem with the initial data being �1.0, 0.5, �0.2 and 0.8 in the first,
second, third and fourth quadrants, respectively. The solution to the problem is also of a shock interacting
with two rarefaction waves. However, the shock curve in this example involves a very sharp corner. Again
the shock is tracked and the problem is computed on a grid of 802 (h = 0.025). The numerical solution at
t = 1 is displayed in Fig. 4.4. Fig. 4.4(a) and (b) shows the contour of the projected solution on the finer grid
and the tracked shock curve, respectively. Also for the verification and comparison we compute the same
problem with the underlying scheme without the tracking, and the contour of the solution is displayed in
Fig. 4.4(c). As in the previous example, the result with the tracking is much superior to that without
tracking.

However, the sharp corner of the shock curve is blunted out, which is also due to the single xy-type
discontinuity cells of the kind shown in Fig. 3.11 near the corner. Also there are two kinks on the two sides of
the corner, which we believe is caused by the reason that our second-order front-tracking method is designed
in a Lax–Wendroff fashion, see Section 3.2.3. Introducing certain TVD or ENO limiters in the R-Step may
improve the result.

a

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1b

—1 —0.8 —0.6 —0.4 —0.2 0 0.2 0.4 0.6 0.8 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1c

Fig. 4.3. Numerical solution for Example 5 at t = 1, (a) the contour of the projected solution on the finer grid computed with the tracking,
(b) the tracked shock curve and (c) the contour of the solution computed without tracking.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1575
The following five examples are for the Euler system of gas dynamics:
ut þ f ðuÞx þ gðuÞy ¼ 0; ð4:18aÞ

u ¼ ðq;mx;my ;EÞT ð4:18bÞ

f ðuÞ ¼ qxuþ ð0; p; 0; qxpÞT ð4:18cÞ

gðuÞ ¼ qyuþ ð0; 0; p; qypÞT ð4:18dÞ

p ¼ ðc� 1Þ E � 1

2
qq2

� �
; q2 ¼ ðqxÞ2 þ ðqyÞ2; ð4:18eÞ
where q, qx, qy, p and E are the density, x-component and y-component of velocity, pressure and total energy,
respectively, mx = qqx is the x-component of momentum, my = qqy is the y-component of momentum and c is
the ratio of specific heats. In our tests c = 1.4. The underlying scheme is a second-order WENO scheme of type
developed in [14].

Example 7. This example is designed to assess the accuracy and convergence rate of our front-tracking
method. A cycle C with radius 0.6 is centered at the origin. The initial data are set to be
uðx; y; 0Þ ¼
uðq0; q0; p0Þ; ðx; yÞ 62 C;

uðq1; q1; p1Þ; ðx; yÞ 2 C;

�
ð4:19aÞ

a

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1b

c

—1 —0.8 —0.6 —0.4 —0.2 0 0.2 0.4 0.6 0.8 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.4. Numerical solution for Example 6 at t = 1, (a) the contour of the projected solution on the finer grid computed with the tracking,
(b) the tracked shock curve and (c) the contour of the solution computed without tracking.

1576 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
where q0 = 1, q0 = (0,0) and p0 = 1 and q1 = 2.8803,
qxðx; yÞ ¼ 1:6596 cosðaÞr=0:6; qy ¼ 1:6596 sinðaÞr=0:6 ð4:19bÞ
with
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; a ¼ tan�1 x

y

� �
ð4:19cÞ
and p1 = 5.2191. Initially there is a shock on the cycle and it goes outward as the time evolves and leaves a
circular weak discontinuity, discontinuity in first derivatives, behind it. We track the shock and let the weak
discontinuity be computed by the underlying scheme. The so-called flow-through boundary conditions are
implemented on the boundary of the square region [�1,1]2 in that whenever data outside the region are re-
quired extrapolation data are provided.

We do not have the exact solution to the problem; thus, we compute a numerical solution with our front-
tracking method on a grid of 10242 to t = 0.12, which is the capacity limit of our desktop used for the
numerical simulation, and regard it as the exact solution for comparison. We then compute numerical
solutions with our front-tracking method on a list of coarse grids of 162, 322, 642, 1282 and 2562, and compare
them against the exact one to assess the numerical errors and convergence rate. The L1 numerical errors of
density and the convergence rate are displayed in Table 4.5. To see the improvement of our front-tracking
method over capturing methods we compute the problem on the same list of grids with a forth-order WENO
scheme without tracking, and the numerical errors and convergence rate are also displayed in the Table. It is

Table 4.5
L1 numerical errors of density and convergence rate for circular shock problem

Case Grid L1 errors Rate

Tracking 162 8.670 · 10�2 –
322 2.138 · 10�2 2.020
642 9.205 · 10�3 1.216

1282 2.990 · 10�3 1.622
2562 1.021 · 10�3 1.550

WENO4 162 7.248 · 10�1 –
322 4.209 · 10�1 0.7840
642 2.227 · 10�1 0.9183

1282 1.140 · 10�1 0.9666
2562 5.540 · 10�2 1.041

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1577
seen that the results with tracking are much superior to that of the WENO4 scheme. Since there is a circular
weak discontinuity which is computed by the underlying scheme, the 1.5th-order convergence rate is the best
one can expect for our front-tracking method on this problem. We note that the results of the WENO4 scheme
have only first-order convergence rate; besides, the numerical errors of the results of the WENOs scheme are
much greater than ours.

Example 8. This problem is also designed to assess the accuracy and convergence rate of our front-tracking
method. We now have two cycles, C with radius 0.6 and C1 with radius 0.4, and both of them are centered at
the origin. The initial data are set again as (4.19a) with the same q0, q0, p0, q1 and p1 as in the previous exam-
ple; however, q1 is set to be 2.8803 outside C1 and 0.62847 inside C1. Thus, the solution has an outward-going
contact discontinuity initially at C1 in addition to an outward-going circular shock. Also the so-called flow-
through boundary conditions are implemented on the boundary of the solution region. We do not have the
exact solution to this problem either; therefore, we conduct the numerical experiment as the previous one,
compute a numerical solution on a grid of 10242 to t = 0.12 and regard it as the exact solution, and then com-
pute numerical solutions on a list of coarse grids and compare them against the exact one. The L1 numerical
errors of density and the convergence rate are displayed in Table 4.6. To see the improvement of our front-
tracking method over capturing method we compute numerical solutions on the same coarse grids with
WENO4 scheme without tracking, and make the comparisons against the exact one. Again, the convergence
rate of our front-tracking method is about 1.5th-order and the numerical errors of our method are much smal-
ler than that of the WENO4 scheme.

Example 9. A cycle with radius r is centered at the origin. Initially, the density of the gas is 1.0, velocity is
0.0 and the pressure is 1.0 outside the cycle and 10.0 inside the cycle. Thus, initially there are a shock and
Table 4.6
L1 numerical errors of density and convergence rate for the circular shock and contact discontinuity problem

Case Grid L1 error Rate

Tracking 162 8.670 · 10�2 –
322 2.614 · 10�2 1.707
642 9.908 · 10�3 1.400

1282 2.990 · 10�3 1.668
2562 1.190 · 10�3 1.390

WENO4 162 1.127 –
322 6.412 · 10�1 0.8134
642 3.722 · 10�1 0.7845

1282 2.029 · 10�1 0.8753
2562 1.056 · 10�1 0.9416

a

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

b

c

e

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

d

Fig. 4.5. Numerical solution for Example 7 with the front-tracking on grid of 802 at t = 0.35, r = 0.2; (a) density, (b) velocity, (c) pressure
and (d) the tracked discontinuity curves.

1578 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
a contact discontinuity, both of which are going outwards, and a rarefaction wave, which is going
inwards, on the cycle. The so-called flow-through boundary conditions are implemented on the boundary
of the square region [�1,1]2. This example is designed not only to assess the accuracy and resolution but
also to test the efficiency of the ‘‘stack-technique’’ and the symmetric property of our front-tracking

—1—0.500.51—1—0.8—0.6—0.4—0.200.20.40.60.81Fig. 4.6. Numerical solution forExample 7without front-tracking on grid
method. Since initially the two tracked discontinuity curves are on the same cycle, there are many stacked
discontinuity cells involved in the computation at the beginning stage. Also, we should note that our
front-tracking method is not symmetrical with respect to the two spatial directions. This is because the
auxiliary fronts in each time step are produced alternatively in favoring x- or y-direction; therefore, begin-
ning initially with different spatial directions favored in producing auxiliary fronts will come to different
numerical results, and we would like to see if the numerical results are sensitive to the asymmetry of our
method.

Two different r’s are experimented. Firstly, we take r = 0.2 and compute the problem on a grid of 802

(h = 0.025). The numerical results at t = 0.35, projected on a finer grid, are displayed in Fig. 4.5. Here pictures
(a), (b), (c) and (d) are contours of the density, x-velocity, y-velocity and pressure, respectively, and picture (e)
is the tracked discontinuity curves, the inner one is the contact discontinuity and outer one is the shock. For
verification and comparison we compute the same problem on a grid of 1202, finer than the previous one, with
the WENO4 scheme without the front-tracking, and the numerical results are displayed in Fig. 4.6 with picture
(a) the density, (b) x-velocity, (c) y-velocity and (d) pressure, respectively. Secondly, we take r = 0.1 and
compute the problem on a grid of 1202 (h = 0.016666) to t = 0.45. The numerical results are displayed in
Fig. 4.7 and the results on a grid of 1602 without tracking for verification and comparison are displayed in
Fig. 4.8.
a

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1 b

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

c

—1 —0.5 0 0.5 1
—1

—0.8

—0.6

—0.4

—0.2

0

0.2

0.4

0.6

0.8

1

dof 120 2att= 0.35,r= 0.2; (a) density, (b)x-velocity,(c)y-velocity and (d) pressure.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550�1588 1579

�1�0.500.51�1�0.8�0.6�0.4�0.200.20.40.60.81

b

�1�0.500.51�1�0.8�0.6�0.4�0.200.20.40.60.81c—1—0.500.51—1—0.8—0.6—0.4—0.200.20.40.60.81—1—0.500.51—1—0.8—0.6—0.4—0.200.20.40.60.81—1—0.500.51—1—0.8—0.6—0.4—0.200.20.40.60.81eFig. 4.7. Numerical solution forExample 7with the front-tracking on grid of 120•

120 att= 0.45,r= 0.1; (a) density, (b) velocity, (c)
pressure and (d) the tracked discontinuity curves.1580

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550�1588
We see that the two tracking results are superior to those of the non-tracking ones. Not only are the
discontinuity curves sharpened but also the resolution of the solution in the smooth region in the middle is
greatly improved. We also note that the numerical solutions show a good quality of symmetry, which indicates
that they are insensitive to the asymmetry of the method.
a d

�1�0.500.51�1�0.8�0.6�0.4�0.200.20.40.60.81
Example 10. A Mach 5.0 shock in a polytropic gas (with unshocked density 1.0) striking an interface separat-
ing two polytropic gases (both have c = 1.4). The pre-shock contact density ratio is 1:5. The interface is
sinusoidally perturbed with wavelength 1.0 and amplitude 0.1. The solution region is (0, 1) · (�1,1) with
flow-through boundary conditions on the top and bottom and periodic boundary conditions on the left
and right. This problem is suggested in [8] and used by the authors of that paper to test their conservative
and nonconservative front-tracking methods. In our test the interface is tracked and the shock is not. As in
[8], We conduct the numerical experiment on 40 · 80, 80 · 160 and 160 · 320 grids and the numerical results,
projected on a finer grid, in the region [0,1] · [�0.1,0.9] at time = 1.38 are presented in Figs. 4.9–4.11, respec-
tively. Readers are referred to the above mentioned paper for numerical comparison.

To show the improvement on resolution of our conservation front-tracking method over capturing
methods, we compute the same problem with the WENO4 scheme over grids of 320 · 640 and of
640 · 1280 and the contours of the densities are displayed in Fig. 4.12, where (a) is on the grid
320 · 640 and (b) is on the grid of 640 · 1280. It is seen that the tracked interface of our method on
the grid of 160 · 320 has almost the same structure as that of the captured one of the WENO4 scheme
on the grid of 320 · 640 away from the vortex regions; moreover, our tracked interface has much better
resolution than that of the captured one. The captured interface on the grid of 640 · 1280 presents Kel-
vin–Helmhlotz-like instability, and we believe that this KH instability is not physically real due to the rea-
son stated in [38]. However, the tracked and the captured interfaces have somehow different structures in
the vortex regions on the two sides of the mushroom. To better illustrate the situation, we display the 3D

a

0.2 0.6 0.8 1
—0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 b

0 0.2 0.4 0.6 0.8 1
—0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
picture of the density of our front-tracking method on the grid of 160 · 320 in the right vortex region, the
projected one on the finer grid, in Fig. 4.13 and also display the 3D pictures of the densities of the WENO4
scheme in the same region in Figs. 4.14 and 4.15, where Fig. 4.14 is on the grid of 320 · 640 and Fig. 4.15
is on the grid of 640 · 1280. It is seen that the bubbles and spikes of our tracked interface in this region are
0 0.40

highly resolved, while that of the captured ones, on either grids, are severely smeared and lose most of their
structures in the region.

We note that the tracked interface, as well as the density, on the grid of 160 ·

0.4 0.6 0.8
�0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 b

0 0.2 0.4 0.6 0.8 1
—0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c

0 0.2 0.4 0.6 0.8 1
—0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 d

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
—0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9e

Fig. 4.11. Numerical solution for Example 10 on grid of 160 · 320 in the region [0,1] · [� 0.1,0.9] at time = 1.38; (a) density, (b) x-
velocity, (c) y-velocity, (d) pressure and (e) tracked interface plot.

1584 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
before, our front-tracking method is not symmetrical with respect to the two spatial directions. Besides, the
interface in the two regions is not quite smooth due to the stretching and deformation by the velocity field;
thus, there are single xy-type discontinuity cells of the kind as shown in Fig. 3.11 involved in the auxiliary
front near the points of spikes, where our front-tracking method loses accuracy. Therefore, the tracked front
becomes sensitive to the asymmetry of the method in the two regions. We wish that the future modification of
a 0 0.2 1

a

0 0.2 0.4 0.6 0.8 1
—0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 b

0 0.2 0.4 0.6 0.8 1
—0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 4.12. Numerical solution for Example 10 without front-tracking on grid of 320 · 640 and 640 · 1280 at t = 1.38 (a) density on grid of
320 · 640, (b) density on grid 640 · 1280.

0

50

100

150

200
0

50
100

150

0

20

40
our algorithm in those single xy-type discontinuity cells on auxiliary fronts mentioned before in this section
will ease this problem and improve the quality of the tracked interface there.

5. Conclusion

We have studied another important feature of our 2D conservative front-tracking method, i.e. 2D discon-
tinuity curves are tracked in a 1D capturing fashion. The evolution of 2D discontinuity curves are locally
described by 1D conservative PDE’s of (3.5). Then the tracking is realized in our method by numerically
simulating these 1D PDE’s in a conservation fashion. Developed in such a way, our front-tracking method
is Cartesian-grid-based, conservative and numerically easy to implement. As is seen in the numerical
experiments, our 2D front-tracking method has a smooth geometrical description of discontinuity curves.

0

20

40

60

80

100

120
0

20
40

60
80

100
120

0

20

40

Fig. 4.14. Surface of tFig. 4.15. Surface of the de

1586D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
However, it does not have quite satisfactory resolution near corners of discontinuity curves, which is obviously
due to the failure of 1D PDE’s of (3.5) in describing the evolution of these corners of discontinuity curves.
We believe that the traditional Lagrangian tracking should be employed near these corners while still
maintaining the conservation properties of solutions. Modification of the method based on this idea is now
underway, and we expect to enhance the resolution of the corners of tracked discontinuity curves with the
modified method.
he density computed by the WENO4 scheme on 320·640 grid in the vortex region on the right of the mushroom.nsity computed by the WENO4 scheme on 640·1280 grid in the vortex region on the right of the mushroom.

D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588 1587
Acknowledgements

The author is grateful for fruitful discussions with Prof. J. Glimm and Prof. X.L. Li. Some of the numerical
examples presented in Section 4 were suggested by them and the tests were done when the author was visiting
the Department of Applied Mathematics and Statistics at SUNY at Stony Brook. Thanks also go to the ref-
erees for their valuable comments and suggestions, which have helped to improve the clarity of this work, and
to Prof. Zhang Xijiu with School of Foreign Languages, Shanghai University for his valuable help in improv-
ing and smoothing the English writing. Finally, this work was supported by the China National Science Foun-
dation Grant No. 10171063 and Shanghai Pu Jiang Program [2006] 118.
References

[1] T.D. Aslam, A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: system of equations, J. Sci. Comput.
19 (2003) 37–62.

[2] T.D. Aslam, A level set algorithm for tracking discontinuities in hyperbolic conservation laws I: scalar equations, J. Comput. Phys.
167 (2) (2001) 413–438.

[3] I.-L. Chern, J. Glimm, O. McBryan, B. Plohr, S. Yaniv, Front tracking for gas dynamics, J. Comput. Phys. 62 (1986) 83–110.
[4] I.-L. Chern, P. Colella, A conservative front tracking method for hyperbolic system of conservation laws, LLNL Rep. No. UCRL-

97200, 1987.
[5] P. Colella, P.R. Woodward, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1984)

115–173.
[6] D. Enright, R. Fedwik, J. Ferziger, I. Mitchell, A hybird particle level set method for improved interface capturing, J. Comput. Phys.

183 (2002) 83–116.
[7] J. Du, F. Brain, J. Glimm, X. Jia, X. Liu, Y. Liu, L. Wu, A simple package for front-tracking, J. Comput. Phys. 213 (2006) 613–628.
[8] J. Glimm, X.L. Li, Y.J. Liu, Z.L. Xu, N. Zhao, Conservative front-tracking with improved accuracy, SIAM J. Numer. Anal. 41 (5)

(2003) 1926–1947.
[9] J. Glimm, M.J. Graham, J. Grove, X.L. Li, T.M. Smith, D. Tan, F. Tangerman, Q. Zhang, Front tracking in two and three

dimensions, Comput. Math. Appl. 35 (1998) 1–11.
[10] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory scheme III, J.

Comput. Phys. 71 (1987) 231–303.
[11] C. Hirt, B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201.
[12] J. Hu, D. Mao, Realization of a front-tracking method based on conservation for one-dimensional scalar conservation law with

nonconvex flux, Comm. Appl. Math. Comput. 20 (2006) 1–9 (in Chinese).
[13] J. Hu, Realization of a front-tracking method based on conservation for one-dimensional scalar conservation law with nonconvex

flux, Master’s thesis, No. 11903-20720648, Shanghai University (in Chinese).
[14] G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228.
[15] M. Kang, R. Fedkiw, X. Liu, A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comp. 15 (2000)

323–360.
[16] P.D. Lax, B. Wendroff, Systems of conservation laws, Commun. Pure Appl. Math. 10 (1957) 217–237.
[17] R.J. LeVeque, K.M. Shyue, Two dimensional front tracking based on high resolution wave progation methods, J. Comput. Phys. 123

(1996) 354–368.
[18] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser-verlag, Basel, Boston, Berlin, 1990.
[20] Y. Liu, D. Mao, Further development of a conservative front-tracking methods for systems of conservation laws in one space

dimensions, J. Sci. Comput. 28 (2006) 85–119.
[21] Y. Liu, A robust conservative front-tracking method in one space dimension, Shanghai University Doctoral dissertation No. 11903-

01810003 (in Chinese).
[22] Y. Liu, D. Mao, Program realization of a conservation front tracking method on scalar conservation law, Appl. Math. Comput.

Math. 15 (1) (2001) 10–18 (in Chinese).
[23] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci. 53 (1984).
[24] D. Mao, Towards front tracking based on conservation in two space dimensions, SIAM J. Sci. Comput. 22 (1) (2000) 113–151.
[25] D. Mao, Toward robust front-tracking tracking, based on conservation, in: N. Mastorakis (Ed.), Problems in Modern Applied

Mathematics, World Scientific and Engineering Society press, 2000, pp. 265–269.
[26] D. Mao, A shock tracking technique based on conservation in one space dimension, SIAM J. Numer. Anal. 32 (1995) 1677–1703.
[27] D. Mao, A treatment of discontinuities for finite difference method in the two dimensional case, J. Comput. Phys. 104 (1993) 377–397.
[28] D. Mao, A treatment of discontinuities for finite difference methods, J. Comput. Phys. 103 (1992) 359–369.
[29] D. Mao, A treatment of discontinuities in shock-capturing finite difference methods, J. Comput. Phys. 92 (1991) 422–455.
[30] D. Mao, A treatment for discontinuities, in: B. Engquist, B. Gustafsson (Eds.), Proceedings of the Third International Conference on

Hyperbolic Problem, Uppsala, Swedem, 1990, Studentlitteratur, Sweden, 1991.
[31] D. Mao, A difference scheme for shock calculation, J. Comput. Math. 3 (1985) 356–382 (in Chinese).

1588 D.-k. Mao / Journal of Computational Physics 226 (2007) 1550–1588
[32] S. Osher, S. Chakravarthy, Very high order accurate TVD schemes, IMA Volume in Mathematics and Its Applications, 2, Springer-
Verlag, New York/Berlin, 1986, pp. 229–274.

[33] W.J. Rider, D.B. Kothe, Strecthing and tearing interface tracking methods, AIAA-95-1717, Presented at the 12th CFD Conference,
San Diago, June 20th, 1995.

[34] W.J. Rider, D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (1997) 112–152.
[36] S. Shin, D. Juric, Modeling three-dimensional multiphase flows using a level contour reconstruction method for front tracking

without connectivity, J. Comput. Phys. 180 (2002) 427–470.
[37] C.W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes II, J. Comput. Phys. 83 (1989)

32–78.
[38] J. Shi, Y. Zhang, C.W. Shu, Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys. 186 (2003)

690–696.
[39] D.J. Torres, J.U. Brackbill, The point-set method: front-tracking without connectivity, J. Comput. Phys. 165 (2000) 620–644.
[40] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Yan, A front-tracking method for

the computations of multiphase flow, J. Comput. Phys. 169 (2001) 708–759.
[41] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible multi-fluid flows, J. Comput. Phys. 100 (1992) 25.
[42] D.H. Wagner, The Riemann problem in two space dimensions for a single conservation law, SIAM J. Math. Anal. 14 (1983) 534–559.

	Towards front-tracking based on conservation in two space dimensions II, tracking discontinuities in capturing fashion
	Introduction
	One-dimensional method
	Mathematical formulation
	Numerical implementation
	Structure of solution
	Computing solution in smooth regions
	Tracking discontinuities
	Moving and collisions of discontinuities
	Propagation of waves in other characteristic fields

	Summary

	Two-dimensional method
	Mathematical formulation
	Numerical implementation
	Structure of solution
	Computing solution in smooth regions
	Tracking discontinuity curves
	Tracking on a yy-part auxiliary front without reshaped discontinuity cells
	Tracking on a general auxiliary front

	Moving and collisions of discontinuities
	Propagation of waves in other characteristic fields

	Summary

	Numerical experiments
	Conclusion
	Acknowledgements
	References

